Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT One-dimensional (1D) stellar evolution models are widely used across various astrophysical fields, however they are still dominated by important uncertainties that deeply affect their predictive power. Among those, the merging of independent convective regions is a poorly understood phenomenon predicted by some 1D models but whose occurrence and impact in real stars remain very uncertain. Being an intrinsically multi-D phenomenon, it is challenging to predict the exact behaviour of shell mergers with 1D models. In this work, we conduct a detailed investigation of a multiple shell merging event in a 20 M$$_\odot$$ star using 3D hydrodynamic simulations. Making use of the active tracers for composition and the nuclear network included in the 3D model, we study the merging not only from a dynamical standpoint but also considering its nucleosynthesis and energy generation. Our simulations confirm the occurrence of the merging also in 3D, but reveal significant differences from the 1D case. Specifically, we identify entrainment and the erosion of stable regions as the main mechanisms that drive the merging, we predict much faster convective velocities compared to the mixing-length theory velocities, and observe multiple burning phases within the same merged shell, with important effects for the chemical composition of the star, which presents a strongly asymmetric (dipolar) distribution. We expect that these differences will have important effects on the final structure of massive stars and thus their final collapse dynamics and possible supernova explosion, subsequently affecting the resulting nucleosynthesis and remnant.more » « less
-
ABSTRACT The treatment of convection remains a major weakness in the modelling of stellar evolution with one-dimensional (1D) codes. The ever-increasing computing power makes now possible to simulate in three-dimensional (3D) part of a star for a fraction of its life, allowing us to study the full complexity of convective zones with hydrodynamics codes. Here, we performed state-of-the-art hydrodynamics simulations of turbulence in a neon-burning convective zone, during the late stage of the life of a massive star. We produced a set of simulations varying the resolution of the computing domain (from 1283 to 10243 cells) and the efficiency of the nuclear reactions (by boosting the energy generation rate from nominal to a factor of 1000). We analysed our results by the mean of Fourier transform of the velocity field, and mean-field decomposition of the various transport equations. Our results are in line with previous studies, showing that the behaviour of the bulk of the convective zone is already well captured at a relatively low resolution (2563), while the details of the convective boundaries require higher resolutions. The different boosting factors used show how various quantities (velocity, buoyancy, abundances, and abundance variances) depend on the energy generation rate. We found that for low boosting factors, convective zones are well mixed, validating the approach usually used in 1D stellar evolution codes. However, when nuclear burning and turbulent transport occur on the same time-scale, a more sophisticated treatment would be needed. This is typically the case when shell mergers occur.more » « less
-
ABSTRACT Our knowledge of stellar evolution is driven by one-dimensional (1D) simulations. 1D models, however, are severely limited by uncertainties on the exact behaviour of many multidimensional phenomena occurring inside stars, affecting their structure and evolution. Recent advances in computing resources have allowed small sections of a star to be reproduced with multi-D hydrodynamic models, with an unprecedented degree of detail and realism. In this work, we present a set of 3D simulations of a convective neon-burning shell in a 20 M⊙ star run for the first time continuously from its early development through to complete fuel exhaustion, using unaltered input conditions from a 321D-guided 1D stellar model. These simulations help answer some open questions in stellar physics. In particular, they show that convective regions do not grow indefinitely due to entrainment of fresh material, but fuel consumption prevails over entrainment, so when fuel is exhausted convection also starts decaying. Our results show convergence between the multi-D simulations and the new 321D-guided 1D model, concerning the amount of convective boundary mixing to include in stellar models. The size of the convective zones in a star strongly affects its structure and evolution; thus, revising their modelling in 1D will have important implications for the life and fate of stars. This will thus affect theoretical predictions related to nucleosynthesis, supernova explosions, and compact remnants.more » « less
-
Abstract The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational-wave signals identified by the LIGO–Virgo–KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal’s source as inferred from the observational data. GWTC is the data release of this dataset, and version 4.0 extends the catalog to include observations made during the first part of the fourth LIGO–Virgo–KAGRA observing run up until 2024 January 31. This Letter marks an introduction to a collection of articles related to this version of the catalog, GWTC-4.0. The collection of articles accompanying the catalog provides documentation of the methods used to analyze the data, summaries of the catalog of events, observational measurements drawn from the population, and detailed discussions of selected candidates.more » « lessFree, publicly-accessible full text available December 9, 2026
-
Abstract We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO–Virgo–KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, nonnegligible spin–orbit misalignment, and unequal mass ratios between their constituent black holes. These properties are characteristic of binaries in which the more massive object was itself formed from a previous binary black hole merger and suggest that the sources of GW241011 and GW241110 may have formed in dense stellar environments in which repeated mergers can take place. As the third-loudest gravitational-wave event published to date, with a median network signal-to-noise ratio of 36.0, GW241011 furthermore yields stringent constraints on the Kerr nature of black holes, the multipolar structure of gravitational-wave generation, and the existence of ultralight bosons within the mass range 10−13–10−12eV.more » « lessFree, publicly-accessible full text available October 28, 2026
-
Abstract On 2023 November 23, the two LIGO observatories both detected GW231123, a gravitational-wave signal consistent with the merger of two black holes with masses and (90% credible intervals), at a luminosity distance of 0.7–4.1 Gpc, a redshift of , and with a network signal-to-noise ratio of ∼20.7. Both black holes exhibit high spins— and , respectively. A massive black hole remnant is supported by an independent ringdown analysis. Some properties of GW231123 are subject to large systematic uncertainties, as indicated by differences in the inferred parameters between signal models. The primary black hole lies within or above the theorized mass gap where black holes between 60–130M⊙should be rare, due to pair-instability mechanisms, while the secondary spans the gap. The observation of GW231123 therefore suggests the formation of black holes from channels beyond standard stellar collapse and that intermediate-mass black holes of mass ∼200M⊙form through gravitational-wave-driven mergers.more » « lessFree, publicly-accessible full text available October 27, 2026
-
The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses and , and small spins (90% credibility) and negligible eccentricity . Postmerger data excluding the peak region are consistent with the dominant quadrupolar mode of a Kerr black hole and its first overtone. We constrain the modes’ frequencies to of the Kerr spectrum, providing a test of the remnant’s Kerr nature. We also examine Hawking’s area law, also known as the second law of black hole mechanics, which states that the total area of the black hole event horizons cannot decrease with time. A range of analyses that exclude up to five of the strongest merger cycles confirm that the remnant area is larger than the sum of the initial areas to high credibility.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19, during the LIGO–Virgo–KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered ∼14% of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz, where we assume the gravitational-wave emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy 1 × 10−4M⊙c2and luminosity 2.6 × 10−4M⊙c2s−1for a source emitting at 82 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as 1.08, at frequencies above 1200 Hz, surpassing past results.more » « lessFree, publicly-accessible full text available May 22, 2026
-
Abstract Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of general relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO–Virgo–KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent analysis methods considering single-harmonic and dual-harmonic emission models. We find no evidence of a CW signal in O4a data for both models and set upper limits on the signal amplitude and on the ellipticity, which quantifies the asymmetry in the neutron star mass distribution. For the single-harmonic emission model, 29 targets have the upper limit on the amplitude below the theoretical spin-down limit. The lowest upper limit on the amplitude is 6.4 × 10−27for the young energetic pulsar J0537−6910, while the lowest constraint on the ellipticity is 8.8 × 10−9for the bright nearby millisecond pulsar J0437−4715. Additionally, for a subset of 16 targets, we performed a narrowband search that is more robust regarding the emission model, with no evidence of a signal. We also found no evidence of nonstandard polarizations as predicted by the Brans–Dicke theory.more » « lessFree, publicly-accessible full text available April 10, 2026
An official website of the United States government
